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RESEARCH STUDIES OF RANDOM PROCESS THEORY
AND PHYSICAL APPLICATIONS

By George W. Bordner, Charles J. Greaves, and Walter W, Wierwille

CORNELL AERONAUTICAL LABORATORY" INC,
of Cornell University

SUMMARY

Many techniques of processing of random data have been presented
which can be applied to engineering problems. Techniques for estimating
correlation functions and power spectral densities for all classes of random
processes, including nonstationary, stationary, gaussian bivariate, etc. ,
in addition to deterministic processes have been described in a rigorous
mathematical sense.

Further aids to the processing techniques are also given. These
include a complete thesis on the synthesis of optimal digital filters,
including low-pass, high-pass, band-pass, and notch filters. The
technique of digital heterodyning is also presented. To further aid the
processing engineer methods of applying the techniques on a general
purpose digital computer are presented.

For the previously unproven processing techniques presented,
experimental verification is given.



INTRODUCTION

On 1 July 1964 a project sponsored by the Computation Laboratory
of the Marshall Space Flight Center, Huntsville, Alabama, was initiated
with Cornell Aeronautical Laboratory (CAL) to perform a research study
of random process theory. CAL was required to examine the existing
Computation Laboratory techniques used to reduce and .analyze random
process data toward the objective of devising new or improved applications
of statistics and random process theory to existing effprt of endeavor. The
random processes of interest were of meteorology, vibration, and acoustic
measurements or any other applicable random process. Of particular
concern was the physical application of many reduction processes and
functions that were not yet commonly applied to the existing engineering
problems at Marshall Space Flight Center.

The CAL study was designed to meet the computation Laboratory
objectives. The specific goals of the research study were to reduce the data
editing and computer usage time, to increase the "accuracy' of the statistical
estimates of the processed data, and to recommend future applications of
existing data reduction equipment. These improvements were to be a result
of CAL's investigation of the techniques used at the Computation Laboratory
and the appropriate application of:

Digital filtering techniques

Correlation function analysis

Spectral smoothing techniques

Special functions or processing

Spectrum analysis of nonstationary signals

A WN e

Sponsor approval of these technical areas of work and a cross check
with the requirements indicated a research program to meet the Computation
Laboratory requirements. The above list of 5 technical areas of work were
performed and the results given in the technical sections of this report. The
following is an outline of the material presented.

A. Digital Filtering

a) Time and frequency relationships

b) Synthesis of optimum digital filters

c Optimum filters with the constraint of unity D. C. gain
dg Notch filters

e) Digital heterodyning



B. Correlation Function

a) Summary of available computational methods
b) "Half-polarity' correlator analysis

c) ‘""Half-polarity'.and "Full-precision' correlators compared
d) Correlation of signal plus noise

e) Computer techniques of calculating correlation functions
Optimal Spectral Smoothing

Deterministic Data Processing

Nonstationary Spectrum Analysis

a) Theory
b) Experimental results

F. Nonstationary Correlation Analysis
a) Theory

b) Experimental results

Conclusions to the above technical areas are given in the Conclusion
Section of this report. One can always broaden the area of study for the
type of research performed for this project. Further, one may perform
more extensive research in the areas already discussed. Extensions as
these are summarized in the section on Recommendations for Further
Work.



DIGITAL FILTERING

The results of discrete-data processing is greatly dependent upon
the selection of an appropriate sampling interval during the analog to digital
conversion. 4®1In practice we know that no signal of finite duration has a band-
limited spectrum. Under such circumstances the selection of the sampling
interval must be based upon reasonable knowledge that the amplitude of the
spectrum is negligible beyond some frequency fc « This particular frequency
may well be beyond the highest frequency of interest however, the Nyquist
sampling criteria must be satisfied at least to a good approximation, thus
the sampling frequency to be selected is 2 fc.

Time-Frequency Relationships

Where digital reduction and processing of data is employed, itis
often desirable to perform various pre-processing filtering operations.
Whitening and frequency band limiting are only two examples of pre-processing
operations.

Extensive literature exists describing the many methods which may
be employed.in the simulation of transfer functions on general purpose digital
computers. 11, 12, 13, 14, 15 |t would be useful to relate the information
available on time domain aspects of digitally simulated transfer functions and
the frequency characteristics of these transfer functions. Consider for example
that a given frequency characteristics is needed for spectral prewhitening.
With the use of conventional techniques, such as a Bode plot, this given gain
frequency information can be represented by a transfer function. This transfer
function in turn is converted by techniques such as those cited in Reference 15
into a digital filter.

If from the many techniques one is chosen which yields the sum of
the error squared in the time domain a minimum, itwill also insure minimum
power in the error signal. Equivalently, it minimizes the integral of the
square of the difference between the Fourier transforms of the actual and
ideal response.

In the following diagram 2;(z) |, the method selected to digitally
represent the transfer function whose impulse response is w(e) , is

assumed to yield a minimum at the output.

mSuperscripts refer to the references.
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Let F (Z) Dbe the sequence (or #) transform of ;ﬁ («7) taking the inverse

sequence transform we have
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(3)
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where the path 7 is the unit circle.
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changing from a contour integral by letting # = &€ jwT

! ¥ r 7
—,7”;0 e?(nﬁ~é—7’—, ‘-/‘f_’s gSee (w)dew (5)
F3
where We = 27
=
JaT lAgy)-20w)
Foe(e?") = &, @) = 2 (6)

The above equation, is essentially the discrete form of Parseval's Theorem,
illustrating the desired results; namely, minimizing the left-hand side of
equation (5 ) is equivalent to minimizing the right-hand side.

In general, then, the method of digitally simulating an analog filter
which provides a best time response (with the mean-square-error criteria)
is also the one which provides the least distortion from the ideal frequency
response.

Double-Ended Filters

In recent years a considerable amount of literature has been written
on digital filtering techniques. Unfortunately, much of the present literature
does not explicitly state the basis of the synthesis. Furthermore, in many
cases a very general class of filters is considered, thereby making the
resulting expression for the filter weights somewhat cumbersome to apply.

The class of filters to be considered here is limited to those most
useful to the pre-processing of data from which correlation and spectral
density functions will be obtained.

Optimality of the weighting sequences is based upon the minimization
of the following error index

We
J’ - )/—:(w) - F @) ldw (7)
-

where £ @) is the actual frequency function achieved and F, &) is the
desired ideal frequency function. Details of the minimization procedure are
carried out in Appendix A.

In nonreal time processing of discrete-data it is feasible and often
advantageous to consider the use of double-ended filters. Such a filter would
respond before the input arrived and the weighting sequence would have values
for both positive and negative time hence the term double-ended.



The class of filters to be investigated is defined as the set of all
filters which can be expressed as a linear combination of filters of the following
form:

Fe@) =R, +3 1, (8)

where R{(w), Z;(w) are real functions of the real frequency variable

and

I(’ (2.) = o

| 5 lef £ Wy £ e
oTherwise

That is to say /~ &) is a member of the class if A&/ can be
expressed in the following form:

1
F@) = > k FB@ (10)
£=o

where /(, is any arbitrary constant.

(9)

i

Rp @/

The relationship between the folding frequency and spacing between
data points is given by

/
T = 2F (11)
= X
where “e
T .= time spacing between data points
4, = 27f

Two properties of this class of filters are apparent from the definition
given in equation (9 ). I @)/ being zero implies that the phase function is
zero at all frequencies and thus no phase distortion of the input signal is
produced. Secondly, the impulse response is symmetrical about the origin
as is readily shown by taking the inverse Fourier transform of F¢v) .

Consider now the synthesis of a low-pass discrete-data filter whose
ideal frequency characteristics are shown in Figure 1 .



F(w)

w, we W
Figure | | DEAL FREQUENCY CHARACTERI STICS

Taking the inverse tranform of F ) vyields

Foo[Fen] zT,/»/ e™ (12)

£ = W S gt
™ w,

The signal F@® is frequency band-limited and thus can be sampled
every 7 seconds without causing frequency folding. The function after having
been sampled and multiplied by 7 to restore the frequency gain is given by

o
VR B ol (13)

&y

Frequency characteristics of the sequence £, is illustrated in Figure 2,
where only two of the infinite nhumber of shifted components have been
included.
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Figure 2 FREQUENCY CHARACTERISTICS OF fp,

If the input data is designated by X then the output of this low-pass filter
y is given by the discrete convolution.
n

Y, = Xw ¥ = 2 Ewsta (14)

k= -o°

From the basic low-pass discrete-data filter described above
generation of a few of the more commonly used filters is considered. A
high-pass filter is formed by the substraction of a low-pass from an all
pass or unity as shown in Figure 3 .

Fy (W) Fup (w) th (W)
! I

- W, 0 We “We “Wo 5 W W “We ~W, ‘ W We

Figure 3  FILTER COMBINATIONS



The weighting sequence for the high-pass filter is given by the sampled inverse
Fourier Transform of

Fy (@) ~Frp (@)
which yields f/m (n) = /—fu, (n) (15)

through similar reasoning the generation of the weighting sequence for a band-
pass filter would be given by

p ) =F, (M) <k, () (16)

Finally the notch filter is arrived at from the substraction of a band-pass from
an all pass and the weighting sequence for the notch is

-F”[h) = -be (n) (17)

A variety of other fregeuncy functions can readily be achieved through
various combinations of the basic low-pass forms represented by equation (9 ).

The weighting sequence arrived at in the foregoing discussion spans the
entire time axis. From the standpoint of practical considerations, the sequence
may only extend over some finite interval. Since the class of filters which have
been considered are derived from the basic low-pass, the frequency characteristics
of this filter using only a finite length of its weighting sequence is investigated.

The frequency characteristics of such a truncated sequence is given by
N ,
FRe) =) Fp 7707 (18)

n=-N

utilizing the property that -f fn the above expression can be placed in the
following form

F*[w)=7‘;+zz fh s h%—?f (19)

[}
h=/
if the following changes of variables are made
&),
ey 2V 4 ; — =
J = V-

the normalized frequency function is given by

N .
F*(x) = Sth hAT ros nan
F " (x) /”/Hz?,z_:/ e ) (20)

A series of normalized frequency plots is included in Appendix B.
The relationships between sharpness of cutoff and the parameter 4 is

10



readily determined from an inspection of these graphs. It is felt that the
generation of these plots, which are not commonly available, would in
general be of greater aid in the determination of filter weights than a
relationship between the value of the error index and N .

~_ Often it is desirable for a %iven numerical filter to_exhibit unity D. C.
gain in addition to other specified characteristics, To obtain a solution for the

optimum filter weights, which passes D. C. with unity gain, the constraint
is multiplied by A a positive constant and added to the original performance
index. The filter weights obtained with this approach are given by

N L
L S ; ketej
E k_( £1’ + J=-N Z=o (21)

C = ‘
” - 2 N+

Equation (21) gives the optimum weights in terms of the component filter

weights. Details of the derivation of equation (21) are found in Appendix C .

It is interesting to note that the filter weights specified by equation
(21) differ from those of Reference 22 which also exhibit unity D. C. gain.
The discrepancy between the two results apparently arises from the fact that
no attempt was made in Reference 22 to obtain the weights based upon the
minimization of a performance index.

Notch Filters

In the calculation of power spectra, the effect of frequency spreading
due to the use of any particular spectral window is minimized when the spectrum
under consideration is prewhitened before final spectral analysis is performed.
The shape and location of the prewhitening or notch filters would be determined
by a fast pilot estimation. Computational time for spectral analysis may increase
in general with the implementation of notch filters, along with their inverses,
to restore the spectral estimate. However, the additional time taken, if any,
must be considered as a trade off for greater accuracy in the spectral estimates.

A portion of the prewhitening may be achieved by a modification of the
analog transducer transmission system; however, in almost all cases, greater
flexibility is provided by complete digital processing.

As an alternative to the double-ended discrete filter technique,
consider the following bilinear transformation given by:

. |
S = é‘ II+ :" (22)

11



which maps the entire left half of the complex § plane within the unit circle

in the complex # plane. The application of this transformation upon linear
constant parameter analog filters to produce a discrete-data recursive formula
is often referred to as the Tustin transformation. Simplicity and speed with
which the recursive weights are computed make this technique advantageous.

In general terms, consider the filter given by

A

a; s’
Jé:o Y (23)

F(s) = & .
()= "8
J=0
Applying the Tustin transformation to equation (23 ) yields the following
recursive formula

B4 B g
Im = Z 8y Xm-i =~ 2 g tmi (24)
A=0 AL=0 0
where the weights are determined by
Ve . .4 : ;
- JY/B-~J
Ri = X r2i 9 F 0()E7) (25)
J:D £=0
where
RJ = A, or By
and ry = d; or b; respectively.

As a specific example, a notch filter with the analog pass characteristics
illustrated in Figure 4 is given below:

S* + @’ (26)
S* + 24§ + WA

Application of equation (25) yields the following weights:

Ao = (—‘)o2 T2 4 4

A = 2002 T2 g (27)
Az = W2 T244

Bo = o2 T2 4 WoT+4

By = 2wo272_3

By = WolTi400,T+4

12
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The discrete-data frequency characteristics will be similar to that of
Figure 4 when «,7 << 2 . If this condition is not satisfied, the following
relationship should be used:

. 2 I" C05 “"lr
w, = — ,’ At B LA 28)
° T ) + Cos @, T (

where ¢, is the rejection frequency desired in the discrete filter and e
is the value used in equation (26 ) before the Tustin transformation is made.
When total frequency rejection is not desired, damping is added to the
numerator of equation (26).

Heterodyning

In situations where the power spectrum is desired for only a band of
frequencies rather than the complete response, an appreciable savings of
computational time may be achieved by filtering and heterodyning before
spectral analysis is performed. The actual time saving depends upon the
width of the band of interest, and its location within the spectrum. The
advantage of this technique will diminish as the band of interest approaches
the origin (i.e., zero frequency).

Before taking a quantitative look at the trade-offs involved in this
heterodyning scheme, consider the system diagram and the characteristics
of the specific filters. The following discussion of the filtering-heterodyning
process concerns discrete data; however, similar arguments can be stated
for analog data reduction techniques.

The processing to be performed is illustrated in Figure 5.
The output of the filter heterodyne system & (»7) is given in the time domain
by

a3(n7) = {[a0(nT) % £,(n7)] - A(aT)}% £y(n7) (29)

Where, by definition
f(nT)* fi(nT) = Z Ly (kT) £ (n7-K7T) (30)

is the discrete convolution. Taking the Fourier transform of equation (29)
yields the following expression for the frequency response of ,43(14r) .

) =4[ So (@) * Fy{w)| % H(w); F,
S3(w) {[S() Fife)] } (w) (31)

The signal £ 3(=»7) is processed in the usual manner to obtain its autocorrelation
function and power spectrum.

14
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To demonstrate the effect of this signal processor, an example is
given. Shown in Figure 6 is a sample power spectrum P, ) of A, 7
and three ideal filter frequency responses along with the power spectrum
Pg @)Of 43(717).

Considering a typical numerical example, let

-Fc = 3500 cps
W, = .8We
w, = 5w (32)
AW = W, - W = 3IW,

T = 1/7000

length of record = 1 second

The double-ended filter responses are given by

sin m.JE5 T
fi(m) = 3 cosm 650 T (33)
= -3Wc = sin m.3TC .
m} = 34
fl() ™ m.37r (34)

Since the band from W, to W, has been heterodyned down to O te¢ A@W | g
new sampling interval, T,w , canbe used for processing Ay @T) Then,

Taw _ Mk i

—

T T aw _3‘

Truncating to the nearest integer gives
Taw = 3T

Then, for the processing of #3 (»7) | every third sample is selected.
Utilizing 10% of the samples will yield a frequency resolution given by

_F = —_— lo ces
res 233

16
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Keeping the cut-off amplitude of the digital filters in the time domain

within 5% requires the use of twenty weights of ﬁ_(»n) and forty weights of

f; () per side. The times to filter, heterodyne, filter and compute the
correlation and spectrum are summed to get the total computer time. Summing
yields approximately 502 normalized computer operations (average FAD time =
1.0) for the computation of the unweighted power spectrum of 4, (»7r) via
digital heterodyning. To compute F;&) with the same resolution without
heterodyning, 1921 normalized computer operations would be required. Then
for this particular example, the time savings factor is 502/1921 = . 26.

18



AUTOCORRELATION FUNCTIONS OF
STATIONARY PROCESSES

With the advent of the general purpose digital computer many users
have developed general purpose data reduction programs. One of the most
useful results of these processors has been the computation of power spectral
densities. Analog processors usually use filters to directly obtain the spectra.
Digital methods usually employ the technique of first computing the correlation
function of the process, then the power spectral density is obtained by
(digitally) performing the Fourier transform of the correlation function.

The disadvantage of this technique is the tremendous number of
multiplications and additions usually required. For this reason, new
techniques have been studied which, when properly applied, will reduce
the computational time. These techniques and methods of application
are given in this section of the report.

The Usual Correlation Computation. - Assume that a zero-mean
sequence of A uniformly-spaced samples *._ is available. Common
practice is to compute a correlation function at lag »+ by the process:

N

Btm) = L 7 Yo ¥um (35)
44 LAY ‘
or by the process
k‘m
Biim] = Lo D ¥y Kniewm (36)
VM 5=

Where %, has the full precision of the data samples. These correlators
are referred to as the ""full-precision' correlators. Note that in either
case for each m 4 (~-m) data multiplications are required, together
with (~--m) additions. Neglecting the scaling for each »n inthe g,
method, a total of

Moy
Z (W-m) = /V(’m,.,rv" 7) — Magy (mm + 7) (37)
ms O Z

multiplications and the same number of additions are required. For large
A~ and -m as many as 107 multiply and add times may be
required. Suc?ﬁ‘arge numbers of operations make computational times
quite long even for the very high speed general purpose computers of
today. Hence, methods which employ only fast logic and additions should

be quite useful.
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Alternate Schemes. - A first alternate scheme is to compute

N-m
i}(’m) = L L (‘d‘?’" 7['7) ¥nsm (38)

V=P 4y,

where is the signum% function. In this scheme, multiplicati?ﬂi are
avoided. The method has been used in a cross-correlation context *»“ in
a plant-identification scheme. During the remainder of this report, g2,
has been termed the ""half-polarity correlation."

A second alternative scheme is to compute

Ry(m) = _L Z (2gn ¥n) (2gn Fonsom) (39)
Mmoo

In this scheme, multiplications are avoided, and fast-assess storage is
reduced. Applications of this system have been suggested for spectrum
analysis for ECM, and for detection devices °» = >, This scheme has
been termed the "polarity coincidence correlator. "

A third alternative scheme is to compute
N
1?5(’”') = L Z z l Vh+ y‘hf‘“‘\- ' y‘n—ynrm\ﬁ (40)
N-m
nz

This scheme avoids multiplication in a manner similar to the "quarter-
square multiplier' concept used in analog multiplierz. It is the basis for
the transformer-rectifier-dc-output phasesd;?tectqr. Applications to
nonsinusoidal waves have been discussed. This scheme has been termed

the '""linear rectifier correlator. "

*signum (T = 4\ when 2 >0
= o0 when 2=0
=z =\ when 2 <o
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Accuracy of the Alternate Schemes - Gaussian Noise. = When the
sequence ¥. represents samples from a stationary gaussian random
process, the alternate scheme R3(w) is, for large ~ , an unbiased
estimator_of th8 true correlation function, within a known multiplicative
constant. 8: 210 Not only is Ry(=) an unbiased estimator, but the standard
deviation in the output is not much Iar%er than that for the multiplier-square
correlator in certain evaluated cases.

The alternative scheme Ryt+) does possess a known, arcsine-
shaped bias. This bias, which can be computed by standard techniques, 10
can in principle be removed. However, it is possible that for spectrum
analysis the bias may not seriously degrade the spectrum. With Markov
gaussian noise, for example, the spectrum is distorted less than 2 db, as evi-
denced by a power series expzngion of the arcsine function. Again, little
statistical efficiency is lost. *2° However, little computational speed
advantage of R4 over the Ry correlator, can be realized unless special
purpose computers are used.

Accuracy of the Alternative Schemes: Arbitrary Inputs. - Little
can be said in general for the accuracy of the alternative schemes in the
arbitrary-input case. It can be observed that for a sinusoidal input, for

Ry¢») the correct cosine correlation function results. * Analysis
performed here indicates that if the arbitrary signal has a large component
of gaussian noise, the correlators Ry , Ry ,Rs can be made to
possess small bias. This latter effect is similar to the effect of dither in
nonlinear control systems.

Half-Polarity Correlation for a
Gaussian Random Process

If the parent distribution of the stationary random process ¥,_
is bivariate Gaussian, one can compute the expected value of the half-
polarity correlation function

N-——

%3/’”1) = £ Z (43"‘ 74.) Vhf‘h\, (41)

4 St aad h=7

The correlation function of ,.a stationary process ¥, is defined as

Rim) = E[ # ¥usun] (42)

* This is easily proved by expanding the signum function into its Fourier
series; only the fundamental contributes to the average.
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where E [ ] is the expected value. Now the expected-value of the
estimator R,(=) is

€[ Ry (]

[ .3 G W) Yaun]

nes

YR,

L )l v v

H>/

"

E [(44-¥) Yuem] , for ¥ stateonary (a3)

Let ¢ = ¥#au s v = Hrm

then

ELR&('”‘)] = / / (4?,,1 a) - f /M/m-'} dew Lo (44)

o)

where #2(+, =~) is the joint density function of «¢ and «~ . Given
that the x process had zero mean and normalized correlation of

A=A YT

_ L 2Pu (45)
7 e 273 1-p2)
2mro*/7- /a“

73_[/01./ ) =

where o*=z R(o)
Substituting f/u,w} into the indicated double integral yields

- co - % -2 puviv’
E[zs(”“)] = [ e A9 « / “ e 27 (/—'/z/dw
L Vames Jl2me i)

(46)
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The exponent in the second integral can be written as

- 2pu pe”

- - D Y /»,’a‘_,u‘
ZG"‘(/-/a"} 20"'{7-/‘/ zq-’-(y_/ay
2 (47)
= - (v-pe) - =
20%(1-07) 2a0*
substitution yields
- & - (v pec)”
5[23(4«)] 6&1 4'?44- ” -?-0' - C 17'(/'191’
,/_zn'v /‘271'0“{/-_,0’) (48)

-

Using the identity

- (¥-m)
E[V] :/7‘71/()‘)6@’ /Zyi_ 24" = %(49)
. {2ros

4

with o= T 1-pt)  and m= pae
E[R3(w)] = (/“’2"“4(-) e 7—0“'/"‘“ dee
. Jimae
o0 -
= e g e
// /:%- c &L (50)

|
N
g\_a

X
2
Al g

»

23



performing the integration by letting 7 = -

r
E[ Ry = _2P e gtdr

Vzma™> /|

———

/& 7o)

/| £ R (= (51)
77/ R (o)

Hence for a stationary gaussian process with zero mean and normalized
correlation of (=) , the #&;(+/) |is a biased estimator of the true
correlation function. The relationship between the normalized correlation

1]

~

E[ 1?3(%)]

function » and o, is computed as follows:
E[Ry(=)] = Z R(~) (52)
=

e[ Ry(o)] = /Z _Rto) (53)
T

/R(o)

Since

E[uz,,tw)*j ~ g [ Ryt ]
Ry (o) E[Qg(o)]

EL i) = s (m) (54)

The new normalized correlation function is therefore approxi-
mately unbiased. Since Rj3(+) can be computed more rapidly than the
full-precision estimator, computer time can be saved if zero-mean
gaussian random variables are to be processed. Note that this is also a
test for a gaussian process. Other random processes also exhibit this
correlation function invariance, e. g. pure sine waves oOr square waves with
random phase. (See Ref 9).
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Comparison of K and R - For the work report
here, NASA supplied CAL with four time records which are typical of the
random processes analyzed by the computation Laboratory. These records

were processed by CAL using the &, and K3 correlation techniques.
The resulting correlation functions and power spectral densisite (PSD) for
the two techniques are shown on plots in Appendix D. The PSD's

were obtained by computing the Fourier transform of the corresponding
normalized autocorrelation functions. (Hanning smoothing was also applied
to the PSD)

Upon visual comparison, one can see that the spectra are in very
close agreement. Several "numerical’ comparisons were attempted during
the analysis but such measures.as the average 4, RMS , and variance
of the differences between the [.(~) and Rit~) and resulting
power spectra did not yield useful comparisons. Perhaps the "best"
comparison is the visual examination of the plots.

Methods of Computing the Half-Polarity Correlator. - A complete
digital program was written to compute in minimum time the g, ()
correlator defined as:

/ei{""') = L 2 k’;« ¥, ) y‘n#m (55)

N=m

A prepacking technique, written in MAP, enabled the £, (») to be
computed without any "IF'"' statements, etc., so that only (A=) ADD
times are required per lag. To further reduce the computation time, the
above summation for £3 was replaced with the equivalent Stieltjes

summation (after the Stieltjes integral). In effect the ¥unen, Aare
replaced with the accumulative X = Z v and ¥,
is replaced by mem o 23 7

$n = g ¥ - agm K, = ©,r2 (56)

When §. =9 itis unnecessary to compute the "product," J;, - ,
thus an ADD time is eliminated for each Ja = ¢ . The flow chart ”f
the #&¢m=) correlator is given in Appendix E . A complete

theoretical treatment of the correlation function of quantized date
(including #£; ) is contained in Reference 21, and indicates that for 80 to
90 per cent of experimental data, J= is zero. For the NASA data,
summarized in Table 1 , about half the &, were equal to zero.

Table 1 summarized the computer time required to calculate

the PSD functions of the NASA data records. Note that the computation of
the &) correlation function has been minimized somewhat because Fortran
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programming was not used. A detailed comparison of the resulting PSD's

can be seen in Appendix D , as mentioned in the above discussion.
TABLE 1. COMPARISON OF COMPUTER 2 TIME
AVERAGEP TIME - SECONDS
C d
FUNCTION R () r Ry (m)
CORRELATION® 238 11
PSDf’ g 56 56
MISCELLANEOUS - 16 16

Input, Output, Cosine Table,
and Hanning

TOTAL TIME h 310 83

2 IBM 7044 - 2 usec/cycle.
b .

For 4 example records furnished by NASA.
Using"MAP" programming, this R. correlator takes
approximately one-half the time of the equivalent Fortran
compilation.

Half -polarity correlator with prepacking and Stielje's
Integration technique.

For 700 lags and 7000 data points.
For 700 values of frequency.

The 56 sec. can easily be reduced to 14 sec. with a more
“optimum®™ computation of the Fourier transform.

b Times can be reduced to 268 and 41 sec. respectively
with the more "optimum®™ PSD computation.
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Correlation of Signal Plus Noise

In the above sections, the & correlator was shown to be an
unbiased (or known bias) estimator of the true correlation function for
certain random or deterministic processes; for example, a gaussian
bivariate process and a single sinusoidal signal. It has also been demonstrated
and summarized in the previous section of this report that the R,
correlator can have as much as 20:1 computer time advantage over a care-
fully programmed R, (fullprecision) correlator. It becomes apparent that
computer time can be minimized if the R correlator can be used for a
larger class of random processes. Furthermore, it would be necessary
to determine, by a rapid testing procedure, to what class a given signal
belongs. Not much effort has been applied to determine a good testing
procedure however, this area of research is recommended for future study.

On this project more effort was expended io increase the class
of random processes for which the &3 estimator is unbiased. An analysis
has been performed to compute the bias of the £, correlator for all
stationary processes. The technique is to add uncorrelated noise (white) to
the random process before using the £ correlator. One processes the
signal plus noise rather than signal alone. Let the processing of signal
plus noise by the Zs correlator be designated by 2, . Then the expected
value* of this correlator is given by

13

Nt {ﬁnu, ';t om

T 2,09 AT
E[R ()| = Ryto) € S (m) /’ / W mF (58)
el i 2T E R,

where
2 “Mhn =0
d (m) =
o ;0m #0
5'/,', = samples of signal

//TZ—{:‘ — rms value of white noise added
n

The above relation indicates that the £;%m.) correlator yields an unbiased
estimate of the 2, (an) correlator when the noise strength is sufficiently

*See Appendix F for the derivation of this expected value.
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large compared to the signal sample fn and = #e¢ . For zerolag, m=0,
an additional term appears and is a direct consequence of the addition of
white noise. This term will produce a bias in the PSD function; however,
the bias is of known magnitude and can be compensated for.

With the knowledge that the expected value of the 23’ correlator
is that of the #2Z, correlator for any process #. under the conditions
cited above, the variance of the error was then investigated. An approximate
expression for the normalized variance of the error for non-zero lag is
given’ as

E{ (R‘(%) - W /23/(4"))2] /kzz(") =
[%’ /2/?1}‘:) /szf/ 5 ?

+ o [..___‘2““’)]Z (59)
2 N-m R, (v)

The first term of equation (59) may be looked upon as a bias term and the
second term as the noise-in-output contribution. Increasing the noise
strength will reduce the bias tkrm; however, it will increase the noise-in-
output contribution.

Test of R3 on Signal Plus Noise. - Inorder to show the
effect of adding noise to the signal before processing with the ®;
correlator, a test case was generated. The test signal was a periodic
function

Yt) = g 2m(700) € & & aise 2T (2i00)2 (60)

which has zero mean. Since £ is a distorted sinusoidal function, the Z;
correlator, used directly to estimate the correlation function of x
will not provide a "good'"estimate.

As described above, one should add uncorrelated noise to
the signal X before processing with the #; correlator. For the
sample signal selected the variance of noise added was set equal to the
variance of X . (Thisvariance of x has to be precomputed). To

*The assumptions and derivation of this expression is not given in
this report.
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demonstrate the results, the correlation functions and the respective power
spectra were computed as follows:

(1) The full precision (# ) correlation function of ¥%¢)
This should give the "best' estimate of the true spectrum.

(2) The half-polarity (£ ) correlation function of xc¢2/ .
This should give a "poor'" estimate of the spectrum.

(3) The half-polarity (4/ correlation function of #¢2/
plus the uncorrelated noise. The resulting spectrum should be "better"
than (2), but not as ""good™ as (1).

The resulting spectra are shown in Figure 7. Although
no test for "*goodness™ is given, a visual examination of the plots
certainly demonstrates the useful effect of adding noise before using the
half-polarity correlator. Note how smooth the spectrum of & (m+x)
is compared to Py(%) . Also note the accurate estimate o? the power
at the two frequency components of X&) , namely 700 and 2100 cps.

High Speed Techniques of Computing
the Full-Precision Correlator

Rather than sacrifice the full precision of the sampled

sequence ¥.. for computer speed, various methods of calculating the
R () OF Ry(w) have been investigated. One simple method is to
use 'tighter'" programming, that is programming in basic machine
"language' to avoid the inefficiencies of a general purpose compiler such
as FORTRAN. Further, "optimum®™ use of the commands available with
various machine types can help to reduce the computational time. For
example, the variable word. multiply and accumulate (VMA) command of
the IBM 7044 can be used to great advantage.

Other schemes employ special (digital) computing machinery
to cal'culaﬁ th3'=2 c%grelsgfion functions. One method is to use residue
numbers =% ’ ! - This scheme was studied for this contract.
The residue number system is of particular interest because the
arithmetic operations of addition, subtraction, and multiplication may
be executed in the same period of time without the need for carry. The
equipment proposed in the literature suggests very rapid computation of
correlation functions. Unfortunately, the scheme could not be conveniently
programmed or a general purpose digital computer, so extensive
study, for comparison to other methods, was not completed during this
contract. It is suggested that where one desires to calculate the
correlation funtions in almost real time, this special purpose technique
should be considered.

Other programming techniques use the table look-up to great
advantage. One such method was recently proposed in a letter to the
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editor of the Communication of the ,Association for Computing Machinery
(see reference 7). This method suggests the use of table look-up
coupled with the well-known ""quarter square'™ method used for analog
multipliers.

Further techniques suggest the use of pre-sorting and packing
of the data, which usually eliminate many multiplications because of the
""sameness" of the quantized samples. One such method has been- designed
by W. D. Fryer of CAL. This method is summarized in the following
sections of this report.

The Pre-sort Correlation Method (PSCM)

In the implementation of the pre-sort correlation method
(PSCM) described in this section, numerical data are quantized, sorted,
then transformed into a set of executable computer instructions for rapid
calculation of the correlation sums

-4
A=/
Here A=5A4)4‘=/j2,.~~.,v§ dnd [3:2&,r:/,2~-”f are

two* data sequences of length & ; £ is the-so-called lag number; £
is the maximum lag number; and the ¢% may be thought of as
unnormalized correlation function values.

In order to use the method, data in one of the sequences
( A , say) are quantized, so that magnitudes of these data assume at
most A/, different values. The method provides a speed advantage when
N, < N . The ratio = ~#/w& is a measure of speed
improvement factor over conventionally coded methods, in a sense to be
defined exactly later.

Conventional Coding: Timing. - In order to set a reference
for judging the savings in number of instructions and in speed, a typical
coding of the Cp sums, Eq. 61 is shown here in the language of
IBM 7000-series computers:

*The program always treats the A and B sequences as logically distinct,
even in autocorrelation sums where -- originally -- they may be
numerically identical.
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(Initialize index register 1 to #-4 )
(Initialize SUM to zero)
LooP (0§ A+N-K 51
rMey BsN , 1 (or FmP)
HOD  Sum (or FAOD
STO Sum
TIX LooP 1,1

(computing loop ended)

An individual term in any one of the €4 sums corresponds to a single
passage through this sequence of instructions. In terms of IBM 7044 timing
values, the amount of computing time required would average about 20
cycles (40 microseconds) for the fixed-point instructions ,'just slightly
more for the floating-point instructions. Thus, evaluation of say <.,
requires about 20N cycles.

PSCM: timing. - Before describing the PSCM itself, the manner
in which its speed advantage arises is discussed. An add instruction must be
executed the same number of time (N times for €, ) as in conventional
coding. However, it is approximately true that all other instructions are
executed not /¥ times, but about 4} = N/,a times (where o= w~v/w,
is the "improvement factor™ previously mentioned). The value ,» =~
will arise later( w= 7¢00 , A, = /000 };using this value for illustration,
the evaluation of (¢, , using the PSCM, would require roughly

2N 4 18 /v//.» T 457N cycles (62)

compared with 2¢ & cycles for the conventional coding method of the
previous paragraph.

Description of the PSCM: Example. = Logic of the PSCM is
demonstrated here by means of a simplified, illustrative problem.

Suppose the A data, after quantization if necessary, assume only

values tl, ¥t2 ,o0r = 3 according to this partial table:
Z = / Z 3 o 5 & 7 seoN-/ AN
A; = 3 P -3 -3 / -z ) .- -~/ 2

Conventional coding for the zero-lag sum, ¢,
tion of the sum

G = 38, +28, -38, *3/3,‘ + 15 -28, -/87,#'».—/@_/1-25,,,
(63)

, is the direct implementa-
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with, of course, ' multiplications, (algebraic) additions, and auxiliary
instructions.

Coding the pre-sort method, in contrast, directly implements
this numerically equivalent formulation:

¢ = 3(/3, - /3; “Bf + "‘) +2 {Bz- B‘+ o 5")-’— 7(6’;-57./—’“_(56‘“)

The dominant feature, of course, is that an algebraic sum of AW, = A/3
terms (onthe'average) may be accumulated before a multiplication is
necessary. Or, put differently, only three multiplications are necessary,
rather than +#Y

It is not obvious, from this example, that the auxiliary
instructions (the LDQ, the STO and the TIX instructions) of the conventional
coding are also largely removed. The PSCM can be coded, however, to
accomplish this additional time savings.

Programming Logic for the PSCM. - Although the previous
example demonstrates the principle by which a time savings may be achieved,
the actual programming requires careful attention to details.

First, data in the A sequence may require quantization.

Second, these data must then be sorted into blocks, each
block corresponding to a distinct value of magnitude. Data inserted into
these blocks must carry information about their locations in the original
sequence.

Third, data within a block must be converted from
numerical to instruction words, either ADD (if data positive) or SUBTRACT
(if data negative). These instructions must also be supplied with proper
address values (determined from locations in original sequence), and with
an index. register tag. Each of these blocks, at execution time, will form
an algebraic subtotal such as represented in equation (64)by the parenthetical
expressions.

Fourth, instructions must be inserted between blocks to
multiply (block "value' times subtotal) and to update the over-all sum.

Fifth, "header' and "trailer" instructions must be provided for
initializing an index register (in accordance with lag number and absolute
location of the B sequence), for initializing sums, for storing results, and
for terminating calculation at the proper time.

Figure 8 shows what typical sections of storage would
contain, after the conversion of the A data. Assume for definiteness.
that A data is used in the previous example with A = #oo . Let these
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DEC IMAL
LOCATION

1004
1002
1003
1004
1005
1006
007

1999
2000

CONTENTS NAME
+3 Al
+2 A2
-3 A3
-3 Ay
+1 A5 -
-2 A
=i A7
-1 A399 —
+2 Al000

ORIGINAL A SEQUENCE,

KUMERI CAL,

34

QUANTIZED DA

ANANAA AL

5001 B,
5002 8B,
8003 By

6000 Blo0o

"BUFFER™ ZONE =

ALL ZERO WORDS

6000 t L

SANAV AN

B SEQUENCE
NUMER ICAL DATA

Figure 8

\NAANANAANN

TA

/\,\/\N__\,\/\/v’\mm

PROGRAM STARTS:

FOR LAG NUMBER K, SET IRI
TO THE VALUE - 86@00 +k)
SET AC=

HEADER

7001
7002
7003

ADD 1,1
SUB 3,1
SUB U, I

"3's" BLOCK

STO TEMP l

LDQ THREE

MPY TEMP
STO SUM

CLA ZERO

. STO TEMP
BBQ THOP
MPY) TERP
WDy SuMP
70 SUM
CLA 2ERO

ADD §, |
SUB 7, 1

SUB 999, |

INTERBLOCK
INSTRUCTIONS

"2's" BLOCK

{ NTERBLOCK
INSTRUCTIONS

"|rs" BLOCK

ADD SUM
STO C(k)

(IF k<L, GO TO
BEGINNING FOR
NEXT VALUE OF k.

TRA ILER

OTHERWISE STOP)

EXECUTIBLE INSTRUCTIONS,
FORMED FROM A DATA

REPRESENTAT!I VE DIAGRAM OF STORAGE




1000 A-data be stored in locations 1001 through 2000 (decimal); the 1000
B-data be stored in locations 5001 through 6000; and assume something more
than 1000 words, beginning near 7001, reserved for formation of the
modified A-data -- the executable instructions of the program.

Suppose now that the correlation sum for lag number 4= o
is desired. The program at the right-hand side of Figure 8 would process:

Index register 1 set to the value -5000.

Accumulator zeroed.

The next instruction reads ADD 1, 1.

Its effective meaning is: ADD 5001,
that is: ADD 8,

Similarly, the next few instructions are effectively:
SUB B,

SUB B,

Thus, the ""3's'"' block forms

8’_83_‘3\,.4...-.‘ Y
The first parenthetical expression of equation (64) . The interblock

sequence forms 3 ( B3, -3, =34 t,.. ,) , and stores this partial
sum away in SUM. Analogously, the "2's'"" block forms the subtotal

B, - Be+--+ + B

oo 2

the second parenthetical expression of equation (64) . The interblock
instructions multiply this subtotal by 2 and increments SUM accordingly.

Finally, the ""1's" block forms the subtotal

BS-B7+ . eee 3999 J

and final incrementing of SUM to give €, is executed in the "trailer™.
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The program would now return to the start, with A set equal
to 1, and index register 1initialized to the value -5001. The following
sequence of instructions will then form

3(8-[ &.*"Bg f"") + 2( 83“ B7'+"' + BIW|)+(B('- 89 e - Bloov) bl

which is the correct value for the €, correlation sum, except that

beyond the nominal extent of the original & array -- has appeared. Thus
the sum will be correct if the location 8,.. , contains zero. Generally,
this over-extension of the original B array will occur, eventually, for i
locations, and may most easily be handled (with only small loss of time,
since the number of lags, L , is usually a small percentage of the total

data record length, M ) by adding zero-valued buffer words at the end of
the B array.
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OPTIMUM SPECTRAL SMOOTHING
FOR STATIONARY STOCHASTIC PROCESSES

The criteria of bestness which is used to obtain optimum smoothing
weights is given by the following performance index:

T = [ Ige-ge e

)

In equation (65) the power spectral density function fu (@) is the spectrum
which is obtained when a given correlator and lag window pair are selected
to operate upon the data to be analyzed. Taking the inverse sequence transform

of & ) yields
1 :
Z { i (“9} = DA (66)

where in (66) £ represents the lag window and X4  the correlation function.

The true underlying power spectra of the process being analyzed is
specified in equation (65) by &, ¢ and in general is unknown. Smoothing
weights are found by minimizing the expected value of J with respect to 2,
Results of this analysis, details of which are contained in Appendix G, is
given by the following expression for the smoothing weights.

¢1 E[Ra] ,_7 < N (67)

F[R)]

Dj =

where
p = true correlation function
N = number of data points

Restrictions on the index in equation (67)are implied by limiting
the class of correlators being considered to those which yield a zero value
of correlation when the lag value equals the number of data points. In
particular, if the /#z2 correlator is selected, the expression for the optimum
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weights in equation (67) becomes 2
_ ﬁv’
J - ELRT]
28
2> + VAR[R;]

If the ratio of the correlator variance to the true value of correlation
squared is defined to be the normalized variance = , equation (68) can be
used to compute the assumed normalized variance ~ as a function of the lag
window selected, Itwould be o interest to obtain plots of this normalized
variance for some of the more *standard™ lag windows in use. In practice,
the normalized variance is often assumed to be infinite after a lag value
of about ten percent of the record length.

(68)

J< N

A plot of the assumed normalized variance should in fact accompany
each power spectral density function since the latter is computed with the aid
of the former. The great number of questions which would undoubtedly arise,
from those interested solely in a final spectral density function would most
likely preclude the effective use of such a plot'.

With the assumption that the process under investigation is Gaussian
eguation (68), as shown in Appendix H, may be expressed as

A

g‘ (N-2 9) il s /k/)(¢ )

k= -(N-J~1)

D, = J<N - (69)

The relation given by (69) illustrates the need for appropriate prewhitening of

the spectrum when a "standard" lag window, which becomes zero well before

the maximum possible lag, is utilized. The effect of prewhitening is to reduce

the correlation & (4#90) at a given lag and thus dictates the use of a lag window
£ which decreases with increasing lag 7 . This is so since the numerator

term in (69) is £* while the denominator contains ¢/(N-D . When increased

accuracy of the spectral estimates is the main concern however, it appears more

advantageous to generate the smoothing weights in the manner later described

rather than select a standard window.

The arbitrary selection of a given set of smoothing weights, when
adequate prewhitening is omitted, is to a degree forcing the shape of the final
spectrum to take on certain aspects. Itwould be informative to obtain a
solution (or envelope of solutions) to equation (69) when the weights p5 are
selected to be Hanning, Hamming, Bartlett, or any one of the other standard
forms.
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Adequate prewhitening implies some knowledge of the spectrum under
consideration. This knowledge may well represent the summation of previous
experience with a given process or perhaps information obtained from a pilot
estimation. However obtained, this best knowledge can be used in conjunction
with equation (69) to produce a set of optimum smoothing weights. Generation
of the weights in this fashion will remove the necessity of prewhitening
operations but will in general increase the maximum lag value of the cor-
relation taken into consideration.

DETERMINISTIC DATA PROCESSING

Consider the generation of a power spectral density function, for a
single record x(t} of length 7 seconds, by the following formula (see

Reference 23, p 50). 2@+ X
Se) = Zor X

Fe = F o0}

In equation (70), "it is assumed that the signal is zero outside of the observation
interval of 7 seconds regardless of whether the signal actually exists outside
this interval or not. Application of equatiqn (70) will be referred to as deter-
ministic data processing. This classification follows logically since in (70)
there is no notion of an ensemble of signals, nor signals of infinite durations.
The average power between two frequencies «, and «, for the observation
period is also precisely given by:

(70)

o~ o
Avg. power within frequenc L .
bant pw,_- &, k Y o 27 \] ,f(“") of w

v,

Reasons for the selection of a deterministic approach to spectral
analysis in any given situation vary. As a hypothetical case, consider the
testing of a gear box which is known to be defective. The analyst who receives
the piece of machinery is interested in determining the faulty gear before
discarding the gear box. Expediency dictates a series of tests with micro-
phones while the gears are running rather than disassembly and inspection.
The record length is selected in accordance with the frequencies of interest.
Since the concept of infinite record length cannot possibly yield additional
information, the signal is processed deterministically.

The R, correlator discussed earlier satisfies the definition in (70).
It is significant to observe that no negative power will result in the final
spectrum with this approach, If inthe interest of speed of computation, the
correlation function is not evaluated up to the maximum lag, a unity lag
window should be utilized.
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NONSTATIONARY SPECTRUM ANALYSIS*

The successful characterization of a nonstationary power spectrum
depends largely upon assumptions about the actual time variations of the
spectrum. Restriction of the general class of nonstationary processes
implies some a priori knowledge of the process or its spectrum. A priori
knowledge of the time variations may enable the spectrum analyzer to be
designed in an optimum manner for a particular type of nonstationary
process. Of considerable interest is the vibration record of a rocket during
the lift-off phase and its subsequent passage through the atmosphere which
may represent a nonstationary process whose power spectrum is slowly
time-varying. Analysis of this record as though it were representative of
a stationary ergodic process may result in serious misconceptions as
stationary processing cannot yield information about specific frequencies
at particular times.

The conventional method of obtaining the power spectrum of a
nonstationary process is based upon the assumption that the statistics of the
signal do not vary appreciably over some interval. The greatest error in
this method is that the selected intervals may be too short to yield accurate
spectral estimates. If longer intervals are used, the effectis to mask
possible time variations in the measured spectrum.

The principal results to be summarized in this repor&is the
experimental verification of the usefulness of a new technique®~ for
obtaining the time-varying power spectrum of a nonstationary process.
The nonstationary signal that was selected for study is representative of
the modulation used in "chirp™ radars. The signal can best be described
as a sine wave whose instantaneous frequency is slowly increasing at a
constant rate. The main reason for selecting this signal is that it is
representative of a wide class of nonstationary signals with the further
advantage that the nature of the time variation in its power spectrum can
be readily visualized.

Theoretical Considerations

The major premise of the nonstationary analysis method used in
this study is that of an ensemble-average power spectrum. As a non-
stationary process, consider a group of signals whose statistical description
of the group is defined across the ensemble for each instant of time. If it be
allowed that this statistical description across the ensemble can change with
time, it is clear that a properly defined ensemble-average power spectrum
will exhibit time-variations and will have the same time dimensions as the
statistics of the ensemble.

K
_ 2 Lim L E, (t
s(t,w) = 2t k—vooK,nZz:/ n (4 {(71)

% By Gilbert A. Gagne
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where £€,.(Zw®) represents the energy at time # and frequency «w of the
n? signal of the ensemble y.¢(?) . The corresponding definition of the

ensemble-average autocorrelation function is

. I K
V(t,1) = £7ur 2 Ya)gn(t-2) (72)

M=/

In order for the expression for the nonstationary power spectrum to apply
also in the stationary case, it Is necessary to define the autocorrelation
function y(t, ‘2—) as an even function of the variable <y , thus

Y(t.-r) = ¥(t.7) (73)

The time-varying power spectrum can now be obtained from the time-varying
autocorrelation by Fourier transformation with respect to the lag
variable ¥

s(t.o) = [ y(tm) e VT dT (74)

Application of inverse transformation to S(¢, w) yields the time-varying
autocorrelation function, the other member of the Fourier transform pair:

1 i e
| V(itr) = 2_71/5(t'(°) e VT« de (75)

The nonstationary process selected for study can be described by
the following ensemble:

L4, () = (A cos (0 t® +6,)) (76)

where 6, 1is a random phase angle associated with each member of the
ensemble. Analysis of this ensemble was performed by considering a
single member which can be represented by

5n(2‘) = A cos[é(é)] + n(t) (77)
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where # (%) is wideband gaussian noise whose power spectrum can be
considered constant. The instantaneous frequency of y(#)is given by

w, = f/;[e(t)] = 2wt (78)

which clearly shows the time dependency of the frequency.

The Detection Process. - In most physical situations, there is
usually only one record available from which the power spectrum of the
process may be derived. Since our definitions of the nonstationary
autocorrelation function and power spectrum were derived from notions
of ensemble-averages, some smoothing must be performed on the single
record to estimate S(% «) . The best estimate of S(Z w) is that which
is obtained by applying maximum smoothing without destroying either the
desired time or frequency information. The analyzer configuration shown
in Figure 9 is well suited for nonstationary spectrum analysis because
it allows frequency smoothing to be separated from the time smoothing.
Frequency-axis smoothing of the S(4 «) function occurs in the
predetection band-pass filters, while the time-axis smoothing occurs in the
post-detection low-pass filters.

The amount of frequency-axis smoothing performed on the signal
is dictated by the bandwidth of the predetection filters. Nonstationary
processes of interest are characterized by continuous changes of frequency.
Since any particular frequency may be present only momentarily, itis
not possible to determine that frequency precisely due to the uncertainty
principle relating time and frequency. Consequently, it becomes necessary
to accept some smoothing along both the time and frequency axis and
determine the presence of a band of frequencies rather than a single
frequency.

Attempts to simulate the analyzer of Figure 9 on an analog
computer revealed several practical difficulties. The most serious being
that of maintaining identical bandwidths for each leg of the analyzer. Adoption
of heterodyning techniques eliminated the bandwidth problem while retaining
the desirable features of Figure 9 . 'The principal feature of the analyzer

shown in Figure 10 is its ability to display any line of the spectrum selected
by the local .oscillator.
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The predetection filters shown in Figure 10 are Butterworth filters
with low pass characteristics and whose transfer functions are

H(s) = — : (79)

/] + .065 5 + (‘S/éo)z

The damping ratio of the predetection filters was set at 0.71 and the band-
width was 20 radians. A simple first order low pass filter with bandwidth
0. 2 radians was selected for the postdetection filter.

. The nonstationary test signal represented by equation (77)
which was applied to the spectrum analyzer is described by

y(#) = €77 cos .5t" + n(2) (80)

where e"‘r determines the rate of decay of the amplitude of the test
signal and n(?) is a wide band gaussian noise signal. Equation (80)
was generated directly on the analog computer with wide band gaussian
noise added from an external source. To prevent instability in the
generation of the test signal, it was necessary to switch in at several
points in each data run sufficient damping to reduce the signal levels in
the generator thereby preventing saturation of the amplifiers. To ensure
consistency this switching was performed at precisely the same point in
each run. A secondary effect which resulted from the decreasing signal
level was a-reduction in the signal to noise ratio, the level ,of the injected
noice being held constant during the run. The maximum value of the test
signal, without noise, and which occurred at the beginning of the run had
an RMS value of 7 volts. The wideband noise added to this had an RMS
effective value at the output of the detector of 2 volts. The decreasing signal
to noise ratio at the higher frequencies effectively demonstrated the value
of optimum filtering in characterizing the time-varying spectrum of the
signal.

The output of the nonstationary spectrum analyzer is shown in
Figure 11. Each line (running upward to the right) represents a single
ryn with the analyzer tuned to the particular frequency indicated at the left
of that line. The same test signal (80) , identically generated with wide-
band noise added, was applied to the input of the analyzer for each run.

The first spectral line 4 -0 clearly shows the effect of
the time smoothing which occurs in the post-detection filter. This line,
displays the D. C, level of the signal vs. time and shows that the D. C.
level eventually decreased to a small value (the noise level). A
theoretically perfect nonstationary spectrum analyzer, which is unrealizable,
would have displayed zero everywhere except at Z=2 at which point there
would be an impulse equal in strength to the value of the signal at #=-o©
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The remaining spectral lines exhibit peaking in response at the
proper time in each run, i.e., the 20 radian line peaks at 20 seconds, etc.,
with the amplitudes decreasing exponentially according to equation (80)

The overall effect of Figure 11 is to show that the frequency content of the
test signal is slowly shifting with time. It should be noted that a conventional
stationary spectrum analyzer would only indicate that particular frequencies
were present in the signal and would give no indication of when the particular
frequencies appeared. Itis only when an optimum amount of time and fre-
quency smoothing is applied to a nonstationary signal that particular
frequencies can be resolved in time.

Conclusions to the Spectrum Analysis
of Nonstationary Processes

A new and essentially different approach to the spectrum analysis
of nonstationary signals has been described. This technique utilizes both time
and frequency smoothing to determine the presence of bands of frequencies.
A priori knowledge of the time variations may enable the spectrum analyzer
to be designed in an optimum manner for a particular type of nonstationary
process. A test signal representing a wide class on nonstationary signals
has been analyzed by this new technique and the results show that the
method is indeed useful for determining the frequency content as well as the
nature of the time variations for this class of nonstationary signals.
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A THEORY OF NONSTATIONARY
CORRELATION ANALYSIS*

It is generally recognized that the design of a correlator or spectrum
analyzer for the analysis of nonstationary signals is a difficult task. This
difficulty is the result of several problems. First, there is the problem of
defining a meaningful correlation or spectral function. This function must
possess characteristics which are favorable to mathematical analysis and
which yield to intuitive insight. Then, there is the problem of synthesis of
the analyzer which is to detect the defined nonstationary function. The
synthesis procedure cannot be undertaken until after the fundamental uncer-
tainties which shroud the nonstationary detection problem are understood.
These uncertainties place definite bounds upon the accuracy with which non-
stationary analyses may be performed. A third serious problem involves
the fact that synthesis procedures will generally require a priori knowledge
of the correlation or spectral function which is to be detected -- a most
unsatisfactory situation. All of these problems must be carefully considered
and overcome if a meaningful theory of nonstationary analysis is to be
obtained.

Two previous approaches have been used for nonstationary analysis.
They are the "*ensemble approximation' approach®“and the ''short-time"
approach.ZS’ 26 |n the former, the basic concept upon which the analyzer
is designed is that of approximation of an ensemble spectrum when only a
single pair of time-waveforms is given. This approach places in clear
perspective the uncertainties involved in the analysis of a nonstationary
process, but the approach is extremely difficult to make mathematically
rigorous. The latter approach makes use of an exactly detectable, deter-
ministic spectrum or correlation function; but the detected information is of
limited value, since it cannot be related to network or optimization theory.
The latter approach is helpful primarily in gaining intuitive insight regarding
the nonstationary process.

In this report, the underlying philosophy is closely related to that
described in Reference24. The concept of approximating the ensemble
correlation function by processing a single pair of time waveforms is used.
However, in this report an exact correlation analyzer synthesis procedure
is developed using the methods of applied mathematics.

Definitions and Basic Relationships

The optimal synthesis procedure is initiated with the definition of the
cross-correlation function and the choice of a correlation analyzer configur-
ation which possesses special properties. The derivations which follow
involve cross-correlation function analysis. Autocorrelation function analysis
is then handled as a special case.

*  This sectionwas written by Dr. Walter W. Wierwille. The theory
involved is attributed to him. An earlier version of this theory, which
did not include experimental verification, can be foundin Reference 35.
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Let «,(z) and «;(#2) be defined as a given pair of signals which
are to be cross-correlated. ®* The independent variable .« designates present
time. This pair of signals is assumed to be one member pair of an ensemble
of signal pairs «<,¢) and .<.c¢) ,where k designates the particular pair
under consideration. (For convenience, the subscript designating the ensemble
number of the given signal pair has been omitted.) Then the ensemble cross-
correlation function is designated by the operation

B,(t,7) = <L) (£-7)> 5 Tzo (81)

where the angular brackets represent an as yet unspecified averaging operation
on the lagged products, « <.(¢) <,(x->).**% The function &, ¢#,+) is left
undefined for r< < , since negative delays or pure predictions are generally
unrealizable in a real-time solution.

The configuration which is chosen for the correlation analyzer is that
shown in Figure (12).1t is seen that the signal, «<.re) , is first passed through
a filter whose impulse response is £¢£) . The output of the filter is delayed
by % seconds. Then w« ¢e/ and the output of the delay device are multiplied
together and smoothed by the linear filter whose impulse response is 4A¢2/) .
This configuration is more general than those previously used for correlation
in that the filtering operation represented by .Zr¢) is incorporated. Also, .£/¢/
and £7#) are general linear filtering operations which are to be specified by
the optimization process.

A remarkable property of this analyzer configuration is that it makes
the # axis filtering problem and the » axis filtering problem independent of
each other. To illustrate this independence property, the output signal of the
correlation analyzer is written in terms of the input signals, - ,#/ and <.r2} .

s

* This report deals with the continuous (as opposed to sample-data) case of
correlation. An analogous theory of correlation can be developed using
discrete sequences and summations in place of the continuous functions
and integrations.

++ From the standpoint of the derivation which follows, it is unnecessary to
fully define the averaging operation in equation(8l). It must possess the
property of allowing interchange of order with the integrations which are
performed in the derivation. One possible definition that can be used is

Lem

"
; N
Moo L
k=7

w4 lt) Lo (27
»

< e) 2 04-7) > rzo

when the right-hand side exists.
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If” 4(%) and ¢/ represent physically realizable filtering operations, then
the output signal is

7

o9 S0
et) = ¢, (£, = //4{',\)1_(;*) 4 (£:2) ¢, (£=A-F-T) A7 4N ;5 rzo (82)

where A and #& are variables of integration. |If an ensemble average is
performed over the output signals for each pair of input signals, then

<¥(z7)> = / /1(/\),?(7'} G (A=A, 7+7) A7 %A 5 rzo (83)

The independence property is exhibited by the integral of equation(83), wherein
A(x) operates only on the # axis and #¢¢) operates only on the + axis of the
function ¢,,(£,»). Since each filtering operation processes information in
only one axis, the mathematical synthesis procedure for the two filters is
simplified without loss of generality.

This analyzer configuration possesses other desirable properties.
An important one is that the ensemble average output is unbiased for uncor-
related stationary or nonstationary input signals.* Additionally, the output
of the correlator operating on « /%) and -,¢#/ is unbiased over time if . (z/
and .¢,c2/ are stationary, ergodic, and uncorrelated. These properties are
important, for they show that the correlator does not yield steady, false
indications of. correlation.

Development of a Performance Measure

There are three sources of error which must be considered in the
synthesis of a correlator for nonstationary signals. These sources of error
exist regardless of the approach taken to nonstationary correlation analysis,
even though they have not been fully recognized in the past. In order to under-
take synthesis, it is necessary to develop a performance measure which
accurately assesses these three sources of error. The measure may then be
minimized so as to yield the optimal values of the filters, A/#/and ¢re) .

ote

An ensemble of uncorrelated nonstationary signals is defined to possess
the property

@, (2,>) = L, (£)S(Y)
27

where &¢r) is the Dirac delta function. Then, as long as 7» o
the analyzer configuration yields unbiased outputs.
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The evaluation of the performance measure must not require a priori
knowledge of the correlation function which is being detected, since the existence
of this knowledge would make the subsequent correlation analysis pointless.

One way of avoiding the problem of required a priori knowledge is to choose
representative, known, test correlation functions and then to minimize the

three sources of error in detecting them. It is then assumed that the correlation
analyzer will work well in detecting correlation functions in the same general
class as the known functions upon which it was optimized.

The optimal solution which is obtained will be heavily dependent upon
the particular performance measure chosen to represent the errors. It is
mathematically feasible to obtain a number of solutions by minimizing various
performance measures, and"then to choose that particular solution which is
best suited to the experimental data to be analyzed. In the next two sections,
a single case is described in detail. Appendix | then summarizes two other
representative cases.

The three sources of error in the output of a correlation analyzer are:
1) distortion (or error) of the true ensemble correlation function ¢,¢%,*) along
the A axis, 2) distortion (or error) of @.¢%7>/ along the > axis, and 3) the
inevitable noise or instability in the output of the analyzer which results from
the components in the product /&) «,/#->) which are extraneous to the ensemble
average, ¢,r<,>) ,* These three sources of error are most readily visualized
by considering the product .,se¢)«,c¢-¥/to be made-up of 'the sum of the ensemble
function ¢, (¢ » and the noiselike extraneous component »m/%%*/ . Then the
output of the correlator is

t5r) = [ / AALT) B, (D, re7) b8 dA

f[[}/A)//V/%/Z’A, P+¥) 4744, rze (84)

The objective will be to make the first integral approximate & (2 ») as
closely as possible while making the second integral as small 1n valué as
possible.

Distortion Along the A AXxis. = In order to quantify the distortion of
the true ensemble correlation function produced by the output of the correlation
analyzer, the first integral of equation (84) is examined. -An error repre-
senting the distortion can be defined as the difference between the true
correlation function and this first integral, that is

e ltr) = &.027) -//4/4)4/7/% (£-N, Per)dvdts
o Y

>20  (85)

The third source of error may be equivalently considered as the result of
finite statistical averaging time, which always produces instabilities in
the statistical estimates obtained.
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At this point it is necessary to choose an ensemble correlation function
and an error measure which will serve as a test of the distortion along the

Z axis. A rather elementary, but effective, test function is the following:
z 3 ZZ o

&, (%) = ; Fzo (86)

That is, the test correlation function is a ramp beginning at £=<¢ . The
correlation function is assumed uniform in # for »ze¢ .* (This ensemble
correlation function can be realized by ideal components as shown in Figure
13.) An error measure can be formed by squaring each side of equation (85 )
and integrating over time. Then it is found upon substitution that

/:j(t,r) At =/[t -l_r},(t)]zalt (87)
(4

where £ s/l(’)‘) ar
and 7 () E/ﬁ(/l)(z‘-/i)d/l

= ramp response of the filter whose
impulse response is #(#) .

P

z

i

The quantity /4 can be considered as a general measure of the analyzer’s
distortion of ¢,r¢,») along the # axis.

Distortion Along the 7 Axis. - Distortion along the > axis can be
handled in similar, but slightly more complicated, manner, Equation (85)
is used once again, but a different test function and measure are considered.
One test function which adequately tests the distortion along the 7 axis is the
triangular function. In practice, nearly triangular correlation functions are
often encountered, since in general correlations tend to zero as > becomes
large. It can be assumed that, if the distortion is relatively small in detecting
a triangular correlation function, the distortion will also be small for any

correlation function which can be approximated by a group of staggered
triangular functions. Let

(‘);-7’-; 0t T< %

@, (27%) = | ; *zo0 (88)

l @ e

5% The assumption that the test function is uniform in 2 makes possible
the stpdy of distortion along the .« axis without interaction of the > axis
distortion.
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In this case, itis being assumed that the ensemble correlation function is
uniform in time; that is, itis stationary. (This ensemble correlation function
can be realized by ideal components as shown in Figure (14).) If the error
described by equation (87) is squared and integrated over 7 , the result will
serve as a measure of distortion along the < axis of &,¢2 > :

@ (] @ To~T
P = / e ¢, 7)dr = /[z; —T—/ h(A)dA / A(r)(e-7-7) d'r]zxr (89)

where H a/ﬁ(l)d/l

’ v
wd )= [T

= ramp response of the filter
whose impulse response is L)

Noise in the Output of the Correlator. - A correlator of nonstationary
sigha-ls, which operates upon a member pair of an ensemble of functions, will
have a noise-like component in its output signal. This noise or instability
component is the result of that portion of the input signal pair which is
unrelated to the true ensemble correlation function. The second integral of
equation (84 ) describes the effect of this noise on the detected correlation
function.

As discussed previously, in order to assess the effect of this- noise
component, it is necessary to choose a noise signal and a measure which
adequately test the smoothing characteristics of the analyzer. It must be
remembered, however, that an average other than an ensemble average must
be used for the noise test, since an ensemble average of the function = ¢£,») is
zero. Essentially, a single pair of noisy time waveforms must be used to test
the immunity of the analyzer to noise or instability. A very good test is the
response of the analyzer to uncorrelated signals which are generated by a
stationary and ergodic Gaussian process. This set of input signals can be
considered as an extreme test because signal power exists at all frequencies,
and therefore all frequencies are tested. A good measure of the noise or
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instability is the variance of the output of the correlator for the two uncorrelated
input signals described above. This variance can be written as

. sé;%=//7 A1) (0,) £05) £0%) (90)

Qo000

X N E-2,) 7, (t-Az )75 (t-2,-F -T)7, (¢ =27 - 73 ~T)

*AUKAT AR AR, 5 T >0

where a bar over a quantity indicates a time average.* If advantage is taken
of the theorems for Gaussian processes,28 it is found that

Ll

7, (t-Ag ), (t-2,) 72 (6-2, =% -T) 7, (¢-2, -7 -2)

S(Ag-24) - A=A, + %~ 7;) (91)

+&(7; +fr).- S +T)
$ 8-, + % +T) - S (A ~Ap + 7 +7T)

If equation (91) is substituted into equation (90), it is easily shown that the
second and third terms of equation (91) contribute nothing to the value of the
variance for *>¢ . Then, integration of the remaining term first with respect
to A, and then with respect to y; yields the result that

P, = /4’(,\) L2 -/,e’/r/ 47 ; »70 (92

Equation (92) describes in a straightforward way the variance of the correlator’s
output for an uncorrelated set of input signals. It represents, in a general way,
the noise or instability in the output of the correlator.

* The variance of the output is equal to the mean-squared value of the
output, since for uncorrelated input signals the output is unbiased.
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Performance Measure. = The performance measure for the correlation
analyzer may now be defined as the sum of the three error measures given by
equations (87), (89), and (92). However, it must be recognized that the
relative weights to be placed upon each measure are arbitrary; thatis, itis a
matter of choice to decide how important each of the three sources of error is
to the design of the analyzer. Accdrdingly, the performance measure should
be written in the form

& =2 R + A’TP, + A (93)

where M7 and A: are arbitrary positive constants. There is no need to
associate a coefficient with the measure A, , because ® may always be
normalized such that the coefficient could be made equal to unity, without any
change in the optimal uesign.

It is important to realize that there are two uncertainties with which
one must deal in the design of a nonstationary correlation (or spectral) analyzer.
These uncertainties make it impossible to detect a statistical nonstationary
function, such as a correlation function without error. The two constants

A: and A, represent the compromises which must be reached between
errors on each axis of the detected correlation functions and noise or instability
in the output of the analyzer. These uncertainties are fundamental and must be
recognized if a meaningful correlator design is to be developed.

Design of the Correlation Analyzer

Since the nonstationary correlation analyzer configuration has already
been specified, the completion of the analyzer designh consists of determining
the two filtering operations represented by #/¢/ and 4/#) , as shown in
Figure 12. These filters can be determined by minimization of the performance
measure, @ , given by equation (93). Minimization of this measure will result
in the optimum analyzer design, thereby specifying A¢¢)and ¢c2) .

In the minimization process, the following assumptions will be made
regarding the filtering operations:

. =/1(‘7')dr = /o (94)
0

, =/4(a)//‘z = 1.0 (95)

72(0} = )i(a/ = 0 (96)
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Ky le) = B (o) - o (97)

lim [7-0(71] = 0 (98)
and
Lo [A-r(A)] =0 (99)

The first two conditions require that the unit step response of each filter will
eventually exhibit correspondence by settling at unity. The second two
conditions force the ramp response and the step response of each filter to
begin at zero amplitude. The last two conditions require that the unit ramp
response of each filter will eventually exhibit correspondence by settling to
a unit ramp. Under this group of assumptions, the performance measure
may be written in the form

- %
e = /\;/[,\-- o da + Ai/[r-);(r)f:er

- . (100)
+ [ Fridr / #%(a)din

where the impulse response of each filter is written as the second derivative
of the corresponding ramp response.

If @ in equation (100)is minimized, then it will be found that one
condition on the optimal solution is that £(#) =2 for all »>7; . This condition
is the result of the finite upper limit on the integral in P . The requirement
that #¢») be zero over a finite interval will require that the transfer function
corresponding to #4(r) be other than the ratio of two finite polynomials in the
complex frequency variable. Accordingly, a spectral approximation procedure
would have to .be developed, and would yield only an approximate optimal
solution. It is believed that the spectral approximation procedure would
unduly complicate the solution to this problem, and that it would not reduce
by any worthwhile amount the errors in the correlation analyzer.

A straightforward method for circumventing the above problem is to
add a further condition to the performance measure which insures competition
between the ramp response error and the noise error of £¢(J) for all positive

» + The condition which should be added is

As S [r-rw] o
%
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which produces a form of the performance measure which yields to analysis
and which produces strictly realizable transfer functions for £¢(r/and 4} .
The new performance measure is the same as that given in equation (100)

except that the upper limit on the second integral is now taken to be infinite.

Calculus-of-Variations Solution, = The performance measure can be
minimized by means of the calculus of variations. The method of solution used
herein is similar to (butis more comple}icgﬁan) one reported previously in
regard to optimization of radar trackers. The solution is initiated by taking

variations in each of the functions 7¢#/)and 7%(2). These variations, when
substituted into the performance measure, O , yield the following two variational
equations:
T . 2, %2
I () "/[Q(T)fag‘ "1(7—)] 17‘"/'7;7 (A)d2
+1f/'[/1—r,,(/1)]‘u (101)
g z
+l:/[7—q(7)-d‘nl o)) dr
and

Ie4) = [ 15 3) vy 7 2] [Frar

e [r . (102)
* A [[7-'1(7)] L7

’ ’150/[/1 1) =y 7, (1)) A

where o, and &, are small, arbitrary constants and #,(#) and ”AU‘)
are the variations in 7¢») and 74(») , respectively. From this point the

derivation is carried forward for the optimal value of £c») only. The form
obtained for .4¢A) will be the same as that obtained for £(y)

The usual calculus -of -variations procedure is followed. Form the
equation

DI (x,)

= o (103)
d Ay
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Integration by parts, applied twice, then allows the resulting equation to be
written as

[,} (7) %, (»r)’ - Firim, (-r)l + / ‘rj"(r)@(r}dr]ﬁ 1)
- Ai/[)"—lj(r)] N(r)dr = 0 (104)

The first two terms of this equation are each equal to zero. The
firstterm is zero because the step response of #Z (&) has been specified at
both ¥r=0 Hequation (97)] and &= == [equation (94 ) which requires that

";'_:.",oﬁlr)so . Therefore, the derivative of the variation s must be zero
at these points, which makes the first term equal to zero. The second term is
zero because #(»r)has been specified at y=¢o and y=« , thereby making the,
variation »n. equal to zero at these points. By the fundamental theorem of
the calculus of variations, the Euler differential equation for the extremals
is obtained:

cor “
n(xr) = 44, [7-7(7) (105)
where y
A A
= o
4, = T—;’ {_ .,,31" (106)
VEALZZ)
The solution of this differential equation is of the form
At " f-f ; . 107)
/] (r)=7T+Ae #t I”]rf- Be St J]T+Cetz-ff+.l]7'+ De telrilr (

The solution is valid for 7?72 o0 only. Since the solution must eventually
converge to a unit ramp, the growing exponential terms must have zero
coefficients. Consequently, ¢=0 and O0-¢ . Also, if advantage is taken

of the specifications given by equation (96), the solution can be shown to
take the form

. R nar? LRI =2
Q(T)-T—\/Zﬁz- e +m;e (108)

kT
=’)’—;’:e £ O‘[nﬁr'}“
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The Laplace transform of this ramp response, 2 (s) , is found to be

Zk?-Ska;

IQL(S)=5=(.5‘!‘Z§?.5*Z§;) (109)

Therefore, the transfer function of the optimal filter, L(s) (the Laplace
transform of the impulse response _¢(2) ), is given by

2k S+ 2k (110)
SEZt2keSt2hy

L(s) =

The transfer function, H({SJ) , of the optimal filter whose impulse
response is -A(A) is found to possess the same form:

o Zk S 2k 111
#is) S2+24,5+287 (11n

where

A1 A¢ #
Z\[[mar](

It is seen that the constants 4, and #, are interdependent. .
Consequently, if .4, and £, are tobe evaluated interms of Ay and Az
(the original weights of the performance measure), it is necessary to remove

these dependencies. This can be done by substituting the optimal values of
the 4(»/and A(A| into equations (106) and (112). Simultaneous solution then

A (112)

e £, =—L (’1; e (113)
T e "'t)
d
an AN (114)
éf’=6’/5.</1'::>

Accordingly, equations {110), (@11}, (113), and (114) specify the forms of the
optimal filters in terms of the weights in the performance measure.* In
certain cases, the constants 4, and -4 may be chosen first, in which

* This calculus-of-variations solution yields only one extremal. Itis easy
to prove that this extremal produces minimum correlator error (according
to the given performance measure). The proof is obtained by showing that

I (4) in equation (101) and I(4)in equation (102) are always greater
than or equal to & when the optimal values of % () and %(a) are
substituted.
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R . . a2 z .
case it may be desirable to determine the values of A3 and Ag , which

have then been implicitly chosen. The reciprocal relationships are found to
be:

Ay = G A, 4] (115)
and
: 4
/\:‘_ = é‘"?’ 1€¢ (116)

The design of the nonstationary correlator has thus been completed.

It should be mentioned that, although it is possible to evaluate the
three terms in the performance measure for any setting of A, and A,
the results are of little practical value in determining good settings for A,
and A, . Experimental study has shown that a good procedure is to set
44+ based upon bandwidth and resolution considerations of £(s) . After-
ward, 4, is setby means of a preliminary ekperiment so that sufficient
noise smoothing is obtained.

Experimental Study

An extensive experimental study was performed to verify and determine
the usefulness of the theory of correlation described in this report. The theory
as described herein is exact, so that it is only necessary to insure its correct-
ness. The correctness was established by having the analyzer operate on
signals which were similar to the three test signals used in the mathematical
optimization process. The usefulness ofthe theory was studied by having the
analyzer detect a known nonstationary cross-correlation function which is
similar to that obtained in practice, but is entirely different from the three
test functions. The experiments and results arebriefly described in this
section.

The experiments were all performed on an E. A. . model TR-48
analog computer with an additional TR-20 used as a slave unit. A high quality
wide-band noise source was used to approximate the uncorrelated input signal
required in each experiment. This signal was recorded on one channel of a
7 channel F.M. tape recorder. Then, since each channel had the record and
playback heads physically separated, it was possible to obtain pure time delay
of the original noise signal by recording the output of one channel onto the next
channel. Special filtering and amplitude reference signals were used to main-
tain the quality of each reproduction, In this way it was possible to obtain six
equally spaced values of delay of the original waveform (the samples being
0.733 seconds apart). In order to obtain delay values between those available
from the tape recorder, a new technique was used which requires only standard
analog computer components.30 Thus, the tape recorder was used for the
large delays, and the new delay technique was used for additional vernier delays
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between those of the tape recorder. All of the experimental runs were made
serially; that is, data for each given value of delay were recorded separately.
These data were then combined on the three dimensional graphs, which are
the results of the experiments.

Experiment 1

This experiment was composed of three parts, each part representing
one term of the performance measure, @ . The objective was to determine
in a qualitative way the ability of the analyzer to detect the correlation functions
of signals similar to those for which it had been optimized. The three parts
of the experiment and the results obtained are briefly described below:

1) Autocorrelation of the wide-band, stationary, random input
signal. This test approximates the theoretical uncorrelated
noise test of the analyzer. The steady-state results of the
experiment (See Figure 15 ) indicate that the input signals
are uncorrelated for the three values of delay which were
used. They also show the inevitable noise or instability
which always accompanies the detection of a random process
using finite averaging time. The line of data for >=¢ is not
infinite in amplitude (itis infinite for a theoretical uncorrelated
process) because of the finite bandwidth of the input signal and
because of the smoothing of the 7 axis information by the filter,

£(2) . Inthis experiment 4£,=/0¢ and 4, o.00524.

2) Cross-correlation of the output of a network, whose impulse
response is a single exponential with a time constant of 2.2
seconds, with the wide-band input to the network. This test
approximates the distortion test involving the stationary,
triangular correlation function. It would be expected that the
errors in detecting this correlation function should be small,
since the analyzer was optimized on a similar correlation
function.

The steady-state results of the experiment (See Figure 16 )
show that the errors in detection are indeed small. The

theoretical curve of the correlation function is the dotted line
at the front of the plot. It can be concluded from this plot

that the analyzer is responding in a manner which is consistent

with the mathematical results obtained earlier. The values of
fé,,,, and 4, were the same as for the above experiment.
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3) Cross-correlation of nonstationary signals whose theoretical
ensemble cross-correlation function is a slowly rising ramp
in time. This test is similar to the theoretical test of distortion
along the % axis. An experimental generator similar to that
shown in Figure 13 was used. The analyzer's transient output
beginning at £=¢ was recorded. Because of the similarity of
the responses, only one has been plotted.

The results of this experiment (See Figure 17 ) show that the
analyzer is capable of accurately follpwing slow ramp changes
in the nonstationary correlation function. It shows neither
appreciable undershoot nor overshoot. Therefore, it is quite
clear that the analyzer is responding in an optimum manner for
this form of input. Once again the same values of £, and 4,
were used.

The results of Experiment 1 show conclusively that the analyzer
responds in practice in a manner which the foregoing theory has indicated.

Experiment 2

The objective of the second experiment was to evaluate the analyzer’s
performance in detecting a nonstationary correlation function which was
significantly different from the three upon which it had been optimized, but is
typical of correlation functions found in practical situations.

The nonstationary input signals for the analyzer were generated by
applying the wide-band input signal to the inputs of each of two networks.
After the analyzer had reached a steady=-state condition in measuring the
cross-correlation between output and input of the first network, the analyzer
input was switched so as to measure the cross-correlation between the output
and input of the second network. This type of arrangement produces a step
change in time in the ensemble correlation function being detected. Also, since
both networks are known, it makes possible the study of distortion along the

T axis.

The two networks used to generate the input signals had impulse
responses given by

-z - X
gy —gr? ) Lo
g,(¢] = -39 €°7° 4+ [/3 € (117)
and
-d.6t
g;(t) = 20 & din [.9] 2 (118)
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The <7 axis distortion that the analyzer produces (in steady-state) in detecting
cross-correlation functions of this form can be predicted by performing an
unfolded convolution of ) with each of the above responses. (This result
can be proved by obtaining the ensemble cross-correlation function between
the output of the networks whose responses are g,(¢4) and g4,¢£¢) and the output

of the analyzer network given by £¢¢) .) Thus, this distorted steady-state
output of the analyzer should be

i

9, (7 f 20r) 3 (7o) D7 119)

for the first network, and

. (r) -

]

/7;()") 4, (r+7) &r (120)

for the second network. These two theortical, distorted responses were
computed digitally and have been plotted using dotted lines at each end of the
experimental plot of Figure 18 .

The remainder of the plot of Figure (18)shows the experimental data
obtained. It is seenthat the 7 axis distortion in steady-state has been
accurately predicted. The fact that the correlation function changes abruptly
in time (at £ = 160 seconds) rather than changing as a ramp, indicates that
A(£) is not longer optimum. As a result, the response of the analyzer over-
shoots somewhat before settling to the new values of the correlation function.
Once again the noise or instability is present. The analyzer constants were
set at #=2/2 and#,z000524 . This setting of constants afforded less noise
smoothing than was used in the first set of experiments.

Although distortion exists along each axis of the correlation function
and noise exists in the measurements, it is evident that the detected information
would be valuable in classifying and understanding the process from which the
signals were generated. The ability to detect nonstationary correlation
functions using the techniques developed in this report will be heavily dependent
upon the degree of resolution required along the 7 axis and the degree of
dependence of the ensemble correlation function upon its past values (in = ).
These two factors determine the amount of noise smoothing which may be
incorporated in the analyzer without producing excessive distortion in the
detected information.

Conclusions to the Study of
Nonstationary Signal Processing

It has been shown that a correlation analyzer for nonstationary signals
may be synthesized by proper definition of a nonstationary correlation function,
choice of an analyzer configuration, and choice of a performance measure.
Subsequently, the optimal filtering operations may be determined by means of
the calculus of variations.
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Two fundamental uncertainties exist in the design of a correlator for
nonstationary signals. The first involves a compromise between distortion
along the running time axis of the detected correlation function and noise in
the output of the analyzer. The second involves a similar compromise
between distortion along the delay (or 7 ) axis of the detected correlation
function and noise in the output of the analyzer. The detrimental effects of
uncertainties can be minimized by performing a minimization of a performance
measure which accurately assesses these detrimental effects. The analyzer
configuration which results is then considered to be optimum.

It is anticipated that better results could be obtained with this new
nonstationary analyzer as compared with other analyzers. The fact that other
analyzers do not include the filtering operation represented by ££2) indicates
that maximum noise smoothing is not being accomplished. Moreover, other
analyzers are not generally optimized to take maximum advantage of the
limited amount of raw data available.

Experiments have been performed which show that good correspondence
exists between the mathematical aspects of the theory and their counterparts
in practice. Moreover, for a typical example, but one for which the analyzer
was not optimized, the analyzer continued to operate acceptably.
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CONCLUSIONS

The purpose of the research presented in this report was to satisfy
the Computation Laboratory requirements of (1) studying and applying the
available random data processing techniques to the existing MSFC problems,
(2) develop new and improved techniques of data processing. The following
discussion indicates that the above requirements are satisfied.

Digital Filtering. = Selection of an appropriate sampling interval
which produces negligible frequency folding is paramount to accurate digital
data processing.

The vast.amount of literature available which describes digital
simulation of transfer functions from the time response point of view can
be utilized to produce prewhitening filters having specific frequency
characteristics.

Application of equation (13) along with the information contained in
Appendix B allows the synthesis of discrete filters with sharp frequency
cutoff characteristics. The filters so generated are applicable to all
non-real-time data processing. The same techniques can be applied to
obtain filters with integrating or differentiating qualities.

Taking the Tustin Transform (see Reference 15) of an analog notch
filter will produce a digital filter which can be used for prewhitening, with
the possibility of total rejection of one frequency, These notch filters con-
tain relatively few weights.

In situations where the power spectral density function of only a band
of frequencies is of interest, digital hetrodyning as discussed in the report
may provide a computational time savings in data processing.

-Correlation Functions. - After reading the analysis of different
methods of estimating correlation function, one should conclude that
modifications should be made to any existing computational technique
that does not consider (1) the accuracy of estimates and (2) the computer
time required. Many types of correlation function estimators are given
(autocorrelation being a special case of cross-correlation). Extensive
study of the "half-polarity't correlator is presented. Computer programs
are outlined, which will calculate, in minimum time, the "*half-polarity"
and '"full-precision" correlation functions. It is also suggested that
correlation computational techniques given in the reference are applicable.

Optimal Smoothing of PSD. - The appropriate application of
equation (b09) will produce spectral estimates with greater accuracy and
also eliminate the need for prewhitening of the signal prior to processing.
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Deterministic Processing. = In many situations the source of the
signal to be analyzed and the information to be extracted may dictate the
use of a deterministic approach as indicated by equation (70). This
approach requires no smoothing or prewhitening and will not yield negative
power in the final spectrum.

Nonstationary Spectrum Analysis. = A new and essentially different
approach to the spectrum analysis of nonstationary signals has been described.
This technique utilizes both time and frequency smoothing to determine the
presence of bands of frequencies. A priori knowledge of the time variations
may enable the spectrum analyzer to be designed in an optimum manner
for a particular type of nonstationary process. A test signal representing
a wide class on nonstationary signals has been analyzed by this new technique
and the results show that the method is indeed useful for determining the
frequency content as well as the natyre of the time variations for this class
of nonstationary signals.

Nonstationary Correlation Functions. = It has been shown that a
correlation analyzer for nonstationary signals may be synthesized by proper
definition of a nonstationary correlation function, choice of an analyzer
configuration, and choice of a performance measure. Subsequently, the
optimal filtering operations may be determined by means of the calculus
of variations.

Two fundamental uncertainties exist in the design of a correlator ig
nonstationary signals. The first involves a compromise between distortio
along the running time axis of the detected correlation function and noise in
the output of the analyzer. The second involves a similar compromise
between distortion along the delay (or 3 ) axis of the detected correlation .
function and noise in the output of the analyzer. The detrimental effects of
uncertanties can be minimized by performing a minimization of a performance
measure which accurately assesses these detrimental effects. The analyzer
configuration which results is then considered to be optimum.

It is anticipated that better results could be obtained with this new
nonstationary analyzer as compared with other analyzers. The fact that
other analyzers do not include the filtering operation represented by _Z(¢)
indicates that maximum noise smoothing is not being accomplished. Move-
over, other analyzers are not generally optimized to take maximum advantage
of the limited amount of raw data available.

Experiments have been performed which show that good correspondence
exists between the mathematical aspects of the theory and their counterparts
in practice. Moreover, for a typical example, but one for which the analyzer
was not optimized, the analyzer continued to operate acceptably.
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RECOMMENDATIONS
FOR FURTHER WORK

Throughout the course of performing the research and experimentation
of a project, the investigator invariably '"uncovers' new work areas and more
work in the same areas. Typically this new or extension type work is beyond

the scope of the available time and allotted funds for contract. The following

areas of work are recommended as extensions to the research summarized

in this report.

1.

Nonstationary Processes

a) Expand the applicability of the nonstationary correlator
b) Treat the NASA data with the nonstationary correlator

Process Testing

a) Test for stationarity

b) Test for class of process, e.g. Bivariate gaussian,
Rayleigh, etc.

c) Testof accuracy of estimates

Flow Chart of Generalized Processor

a) Decision making logic
by Accuracy realized by each processor
c; Time saving realized

Application of Special Purpose Computers

a) Use of analog processors for complete data analysis
b Use of analog equipment for preprocessing of data
cg Use of hybrid equipment

Digital Correlation Function Computation

a) Stielje's correlator. Rather than use the two levels of
the half-polarity correlator, use three, five or more levels.
b) Design high speed computer programs to compute Stielje's
correlation.
c) Further study of the half-polarity correlator. Investigate
applicability to processes other than bivariate gaussian.
d) Further study and hypothesis testing of the addition of
white noise prior to the half-polarity correlator.

Transfer Function Estimation

a) Determine the bestn™ order estimate of a system transfer
function.

b) Apply to rocket vibration data to determine an analytic model
of the system. This information vitally needed for booster
control design also this information should be compared with
models obtained from design considerations.
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APPENDIX A
OPTIMUM FILTER WEIGHTS

Consider the following ideal frequency function
L
Flw) = > Ko oy (w)
L=o
where
-J'—th

E) = ) Fo @
M-

(A-1)

(A-2)

It is desired to obtain an approximate frequency function which _has a finite
number of terms in its weighting sequence say 2~+1 terms. The actual

realizable filter will be specified by minimizing the following error index

«w 2
J - / | Ftw) - Fitw| du
S, ’

where the realizable frequency function is given by
N

- (w) = -
F (w) / C, ¢

nz=pN

-y nwT

The error index can also be expressed in the following form
W

J - / £ (w) E ) du
(2
where E(w) = Fulw) - F,,_-(w)
now let Z = e?‘.wbr

and the error index becomes

J = ws E(z)E(Z) 2 ' dz
- zng Jr
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(A-4)
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(A-6)



where the contour 7 is the unit circle. Now using the discrete form of
Parseval's theorem we have

L . 2
= Ke-”'e«) (A-?)

£L=v

= WsZ (C,,‘ -

where Cpz0 4 Im|l >N

Minimizing with respect to the C's vyield the following

L
C, = [\_ K £ Iml ¢ N (A-8)
Z=vu

Equation (A-8) indicates that the optimum realizable filter is obtained by
taking the ideal weights intact that is no modification is needed due to the
fact that only a finite number of weights are used. Another interesting
aspect of equation (A-8)is that it indicates that the same number of weights
should be used by each component filter.
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APPENDIX B
LOW PASS FREQUENCY RESPONSES

The relationship given below permits the frequency plots on the
following pages to be inverted to visually produce a second set of 27 graphs.

F(et,8,N) = 1 - F(1+x, 1-8,N)
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APPENDIX C
OPTIMUM FILTER WEIGHTS WITH UNITY D.C. GAIN

With the D. C. gain constraint added, the error index becomes

W N
J = / ‘ E'_(w)—E_(w)l dw /\(2 C,,,*?)
S n=-N
> e A (Z c, - i)
M - 413"\/
= £
C, - D - _ -
2_<4, [_klf,) + /\(Zc,, 1) (C-1)
_ £=o nz-N
Nz —x
Minimizing the above index with respectto <, yields
A = rw (- Y kA ) + Ay oNELEN
JQ =0

(C-2)

The above Z2:{+1 equations a ong with the constraint equation comprise a

set of ZN+2 linearly independent equations in 2¥+2 unknowns whose solution

is obtained as follows

let _
a =

2
£
£, = ) K4
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Placing the 2z~ +2

equations into matrix form yields

Partitioning the above matrix and expanding yields

where

Ac 4+
b ¢

b6 A = K
=/
- 0 [ { ]
i ]
. : b: [
s O :
oa ) J
_C-N.
C = "
C'N_

OLO""""‘“O\ C'N

o~ ‘ ' \

. ~ ) L} ]

| . . x _ :

i “so b ' E
~~~~~~ -oal Cwn
--------160 A | |

(C-3)

(C-4)

(C-5)
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Utilizing the above notation, the solution for the optimum weights are obtained

from (C-3) and (C-4) as follows:
¢4 A'b A

bc +hA bA

1 +bA LA =

A

c = Ak - A'b

From the relations in (C-5 ) we have

A Kk
b'A" Kk
b'A 'k

(6A"B) (b'A"k - 1)

(b"A"b)"(b’A"K -7) (c-6)

-1
A - i— I (C-?)
Substituting (C-7) into (C-6) yields
: N
¢ = Lk - L Z K= 1
X Cor 4')=—A/ -
ZL {2/ + 1)
N
-~ <. —
c,= K, - ,-=Z.,v ki =1
N + 1
L X
Coz D ki, + 1-22 ki (c-8)
£z0 ZN’-P 1
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APPENDIX D
CORRELATION FUNCTIONS AND
POWER SPECTRA

The results of processing the four NASA records -

El127411
El128#11
E12#3
El2#4

are given in this Appendix. The correlation functions for the full precision

and half-polarity correlator are plotted. The respective (Hanned) power
spectral densities of the respective normalized correlations are also plotted.
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APPENDIX E

Flow Chart of the R3 correlator.

ENTER

{

READ . THE
DATA X( 1)
I=1, IMX

l

SCALE X(I)
SO THAT
wax (Ix(1)) = 108

REMOVE THE
MEAN OF X(I)

l

INTERGER 1ZE X(I)
TO NX(T)
l LAG = MAX LAG NUMBER
i.e. 700
I=1
LL = |
LMAX = IMAX - LAG
_ 0 IF +
I=1+1 NX(I) e
- \
M=- M=0
puT f SUB NX(J-1), I}IN Y(1) pur {ADD NX(I-1), 1IN Y(1)
{ARS 1IN Y(2) ARS 1J N Y(2)

| <

0




M=0

PUT {ADD NX(I-1), 1} IN Y(J)

> LL=LLt I

)
I=1I+1
]
0/ 1F. +
< NX(I) -
YES 18
- M<0
NO
M=
PUT {SUB NX(I-1), I} IN Y(J)
YES (L) = I-1
NO
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o )

. polo I=2, IMAX FLOAT THE ACC.
10 NX(I) =2+ (NX(I)+ NX(I-1)) FOP FLOAT (IMAX-(K-1))
FMP 2
STQ R(K)
N=Jd-1 l
K= I K=K+
MM = LL-1I
JMAX = N
l * THE AOS IS NOT A COMMAND.
RETURN s
IT INDICATES THAT THE
PUT (TRA ©}'“ Y(J) APPROPRIATE ADD CR SUBTRACT
COMMAND WILL BE INSERTED
DEPENDING ON THE SIGN OF
. Nx(1).
CLA ZERO
PAX, |
TRA Y(3) PUT (K-1) IN IRI NO Is
: CLA ZERO et I (K=2)+LM(MM)
I TRA Y(1) >IMAX
STORAGE
Y ARRAY
Y(1) A08* NX(LM}) , |
Y(2) ARS | PUT {TRA (© }IN Y(N)
b Y(3) A0S NX(LMp) , |
Y(4) A0S NX(LMg) , | ]
: : N = N-I
' : MM = MM-1
<<
Y(N) AOS NX(LMy) , 1
t(n1) TRA (©)
PP e D Y N e
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APPENDIX F ,
DERIVATION OF THE EXPECTED VALUE OF &,'(=m)

N-m

E[R;(’”‘ﬂ = E[ ,'L'_“Z[Ji '*wéjﬁ“/férm"'ﬂlwn)]
4= |
= ‘;_:" Z E[&Af"(inﬁ*ﬂé#mﬂ
Bz
bl e[ g (Fagn # )]
L=
= N__’_m Z 71(2 E[%(’c m'/'”ifmﬂ
#= | o (F-1)
t ) L ()]
A=
E):)Z{(m)] = A+ 53

Consider A

Lo G ] = [ (o 0a) F752) &

ot

) . o | «_Za-z-
: =/7;/;'T/4?’"' (jé(nu %ﬂém} € dn

o (g + Nra) ,r

|1
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Using the above diagram

N f -’
oy B -
20
A = N-L _______Z / c o
i LY 1/2,7-0' o
let o _
= - X
Adn = oLy
7 f“ﬁm
- / |— Lmo T s
- w-m
A= v
where
g = En(o)

Now Consider B

E["”’i% (Fom + 7446.*’»»)]

N = )
let 4 4_t

Hgrm =
The joint probability density function of ¢, ¢~ is:

_ w2 U g
F (et 5 m) = ! e el
Zmrt] 71— e

where Loy ()
(m) = _Lnl777

7’ R (o)

and gt = £, (0)
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! : f tn) O 20 (1-p%)
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———
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B -1 (X2 9 A
<7
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2™/
Sarm
let a4 - %
= A
&&M’ H w4 ﬂ ‘/ﬂ
o 2
2z’ = B
then ) 4
Eltagn (4, 4] = 2T | e “us
V2T /) fm
o - 7 f‘z
:/—__Z: Bn (m e 2 £y(0] Jh1m
T R0
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hence the second term B is

2

A/'-m. / /
3= (2 2_ Ronlom) @ Zhole] tm (F-3)
m J (0]
and
MN-m tlnn- —1,,
Ry () -/Z. WA
Lt [ 3(%] T v Z g I
L o
z
adilgy - ]ﬁf'm (F-4)
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APPENDIX G
GENERATION OF OPTIMUM
SPECTRAL SMOOTHING WEIGHTS

Obtaining an expression for the smoothing weights requires
mihimizing the expected value of the following index:

7- [l

Win, €[] - [ /.,, g - Sé‘“l‘dw]

- M E[@sz (o,-rz,-—sig,-)z]

o o (G-1)

i%i

| f"ﬁ |
M € lw, S (DRI -2DR & 4
Z‘ng E [u) 74100( f) 1‘ 37371 4 )]

w,(20,6[ ] - 24;E[®]) =0 <N

D; = &; ELR;] 4 €N (G-2)

e[/ ]
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APPENDIX H
EVALUATION OF THE EXPECTATION OF THE R, CORRELATOR
SQUARED UNDER GAUSSIAN ASSUMPTIONS

The R, correlator is given by

£ (H-1)
/?2/7.} s fj = —1— Z % 7{44-;' .
N-j 4:':/

Squaring the expression for /?J‘ in (H-1) yields

“g v
[ S+ 23 5 o )
#

iz =1 = A4/
CRADER ] 425 S et ]
Aer =B

Assuming the process under consideration is Gaussian, the above
expression reduces to

E[rf] =

e d

o #) [Z (6 +2¢7) + ZZZ (¢ + ;4_%*3 4—4-,)]

£=1 =4+

MNeg=/
- B2 4 [//V-g) (~—3)¢= +\_'(A/-7 £) &,
N-Z [A/—g)

* L (-5 -4) "fw]
A=/ N-F-t
= &'« w-3+) " 4, 2 ) (v -5-4)( 4+4,; ¢.) -2
N-F w-4)° 4=
Another form of the above expression may be written as

1é /

Neg=1
E[eg] = & + /”_) Z (/v_ - 1A 4} + &34&3) (H-3)

-‘s "(N‘?‘l’
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APPENDIX 1
OTHER REPRESENTATIVE PERFORMANCE MEASURES

1) Choose the measure

6, /'wur /« (2] )

+ A /[/ ) ) + A /[/ a )] a7 (I-1)

where ., (>) is the unit step response of ¢¢¥ ) and

» (A) is the unit step response of A(A)
This performance measure corresponds to the assumption that the three
test inputs are

1) Uncorrelated noise
An abrupt step change in the correlation function with time

2)
3) A stationary rectangular correlation function.
The optimal solutions are
L(S) = 9’7 =
S o
T+ S/, /4 vA) 4A
His) = — x, = __De
I+ % [ 2w)ar
2) Choose the measure

o= [Hinar- [0 4
+ /‘\;/o{[/&- nia]’ + gl [1- fglx):)zf dA
+ /\«,‘./"{[r-d(r)]z + G 1- @(a«)}’} Ay

2
where @ and O",z are arbitrary positive weighting constants.

(I-2)

(1-3)

(I-4)
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This performance measure corresponds to the assumption that the
three test inputs are

1)
2)

3)

Uncorrelated noise

An abrupt step changes in the correlation function with time,
and a ramp change in the correlation function with time

A stationary rectangular correlation function and a stationary
triangular correlation function.

Optimal solution A.

. A
L(s) = 1 + (ﬂ +/”=)S (1-5)
1+ )1+ 3
where ( r )( Ve )
- a + l(“-z—‘-}.l— }’,_' 2,
4 l( —— ) I (1-6)
and
po= e ler-2e)t )"
. \ 2 : (I-7)
and
2 2 2
a= /\7 0‘7' ; /6— = AT
[#12) [%0) (1-8)
for the condition that FS s
/—//S) will have the same form.
Optimal solution B.
L(s) = 2(ced)pPrs + PZ
5% + 2(cre ) PS5 + P? (1-9)
where
A A B
P = (“1‘7,(“—-‘7‘4)1’)/2 (I-10)
Z
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and

%
# = }.’- are Tan '(“z"’%’) ? (1-11)

a

for the condition that

a? < 44 (1-12)

H (S) will be of the same form.

In this solution, it is possible for the damping of the complex pole pair to take
on values between o797 <« § £ 1.0 (§=cea@) . The parameter, J
will, of course, be deperdent on a and b.
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